Le groupe α est le groupe {Manon - Brenda - Celestine - Nicole - Azaria - Mikaël} A rendre pour le 13 juillet.

Exercice 1 : pour tous mais facultatif pour le groupe α

Calculer $\int_1^2 e^{-2t} - \frac{2}{t} + \frac{1}{t^2} dt$ et mettre le résultat sous la forme la plus simple possible.

Exercice 2: pour tous

On considère la fonction f de la variable réelle t définie par :

$$\begin{cases} \text{ si } t \le 0 & f(t) = 0\\ \text{ si } t > 0 & f(t) = 2e^{-t} - 2e^{-2t} \end{cases}$$

- 1. Prouver que f est continue sur \mathbb{R} .
- 2. Justifier que : $\forall t \in \mathbb{R}, f(t) \geq 0$.
- 3. Soit $x \in \mathbb{R}_+$. Calculer $\int_0^x f(t)dt$.
- 4. Montrer que l'intégrale $\int_0^{+\infty} f(t)dt$ converge et préciser sa valeur.

Exercice 3 : pour le groupe α seulement

On considère l'intégrale $I_n = \int_0^{+\infty} t^n e^{-t} dt$, pour tout $n \in \mathbb{N}$.

- 1. Calculer I_0 puis, à l'aide d'une intégration par partie, calculer I_1 .
- 2. Montrer, à l'aide d'une intégration par partie, que pour tout $x \in \mathbb{R}$ et tout $n \in \mathbb{N}$, $\int_0^x t^{n+1} e^{-t} dt = (n+1) \int_0^x t^n e^{-t} dt x^{n+1} e^{-x}$.
- 3. En déduire que pour tout $n \in \mathbb{N}$, $I_{n+1} = (n+1)I_n$.
- 4. Montrer par récurrence que pour tout $n \in \mathbb{N}$, $I_n = n!$.